This is an extension to this question: Break down long multi day periods of time into several single day periods where the problem was solved using Tallies.
The situation I am dealing now is let’s say I have a table like this:
x
OutageID ServerOutageStartDateTime OutageLength (hrs)
1 2020/07/05 17:00 12
2 2020/07/15 11:00 3
3 2020/07/15 19:00 2
4 2020/07/22 14:00 72
The goal is to create a daily outage report over a period of time (Let’s say the Month of July) that looks like this:
Date OutageLength (hrs)
2020/07/01 0
2020/07/02 0
2020/07/03 0
2020/07/04 0
2020/07/05 7
2020/07/06 5
2020/07/07 0
2020/07/15 5
2020/07/22 10
2020/07/23 24
2020/07/24 24
2020/07/22 14
2020/07/23 0
Thanks in advance.
P.S I just saw this other question: Convert Date Range to Individual Days
I am going to review it but in the meantime, please feel free to help!
Advertisement
Answer
This solution also uses a tally table. In this case it uses a tally TVF called fnTally.
Tally TVF (without the embedded notes (see link))
CREATE FUNCTION [dbo].[fnTally]
(@ZeroOrOne BIT, @MaxN BIGINT)
RETURNS TABLE WITH SCHEMABINDING AS
RETURN WITH
H2(N) AS ( SELECT 1
FROM (VALUES
(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1)
,(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1)
,(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1)
,(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1)
,(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1)
,(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1)
,(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1)
,(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1)
,(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1)
,(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1)
,(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1)
,(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1)
,(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1)
,(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1)
,(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1)
,(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1)
)V(N)) --16^2 or 256 rows
, H4(N) AS (SELECT 1 FROM H2 a, H2 b) --16^4 or 65,536 rows
, H8(N) AS (SELECT 1 FROM H4 a, H4 b) --16^8 or 4,294,967,296 rows
SELECT N = 0 WHERE @ZeroOrOne = 0 UNION ALL
SELECT TOP(@MaxN)
N = ROW_NUMBER() OVER (ORDER BY N)
FROM H8
;
GO
Data
drop table if exists #tTEST;
go
select * INTO #tTEST from (values
(1, cast('2020/07/05 17:00' as datetime), 12),
(2, '2020/07/15 11:00', 3),
(3, '2020/07/15 19:00', 2),
(4, '2020/07/22 14:00', 72)) V(OutageID, ServerOutageStartDateTime, OutageLength);
Query
declare @month_dt datetime='2020-07-01';
;with
month_hrs_cte as (
select dateadd(hour, f.N, @month_dt) CalDtm
from fnTally(0, datediff(d, @month_dt, eomonth(@month_dt))*24) f),
outage_hrs_cte as (
select OutageID, dateadd(hh, f.N, o.ServerOutageStartDateTime) CalDtm
from #tTEST o
cross apply
fnTally(0, o.OutageLength) f)
select convert(date, mhc.CalDtm) CalDt, count(distinct ohc.CalDtm) OutageLength
from month_hrs_cte mhc
left join
outage_hrs_cte ohc on mhc.CalDtm=ohc.CalDtm
group by convert(date, mhc.CalDtm);
Results
CalDt OutageLength
2020-07-01 0
2020-07-02 0
2020-07-03 0
2020-07-04 0
2020-07-05 7
2020-07-06 6
2020-07-07 0
2020-07-08 0
2020-07-09 0
2020-07-10 0
2020-07-11 0
2020-07-12 0
2020-07-13 0
2020-07-14 0
2020-07-15 7
2020-07-16 0
2020-07-17 0
2020-07-18 0
2020-07-19 0
2020-07-20 0
2020-07-21 0
2020-07-22 10
2020-07-23 24
2020-07-24 24
2020-07-25 15
2020-07-26 0
2020-07-27 0
2020-07-28 0
2020-07-29 0
2020-07-30 0
2020-07-31 0